
BAYFORCE WHITE PAPER

Converting JavaScript Buttons for

WHITE PAPER
Converting JavaScript Buttons for Lightning Experience

TABLE OF CONTENTS

Executive Summary

Discovery

Simple Solutions

Declarative Solutions

Advanced Solutions

Example: Warn the User
• Step 1: Apex Class
• Step 2: Lightning Component
• Step 3: Lightning Component Controller
• Step 4: Create the Button
• Step 5: Add to Page Layout
• Step 6: Test and Deploy

Example: Mass Delete from a List View
• Step 1: Apex Class / Controller Extension
• Step 2: Visualforce Page
• Step 3: Create the Button
• Step 4: Add to Layout
• Step 5: Test and Deploy

Other Scenarios for Advanced Solutions

Implementation Tips

Additional Resources

1

2

2

3

6

6
6
7
9

11
12
12

13
13
14
15
16
16

17

17

18

EXECUTIVE SUMMARY

Lightning Experience, Salesforce.com's redesigned user interface for
their CRM applications and platform, does not support JavaScript
buttons. In the old interface (now called Salesforce Classic), JavaScript
buttons are very flexible and can be developed directly in a production
environment. For many existing Salesforce customers, it was quick and
easy to develop JavaScript buttons to assist in a variety of business
processes, but now a heavy reliance on JavaScript buttons can be an
impediment to adopting Lightning Experience.

There are good reasons to adapt the features from JavaScript buttons
into Lightning-friendly alternatives. Salesforce did not incorporate
JavaScript buttons into Lightning Experience for security reasons.
JavaScript’s flexibility and ability to access the Salesforce database and
browser features, which make it a powerful developer tool, also
expose vulnerabilities for hackers to capture confidential data or inject
malicious code via cross site scripting attacks.

Lightning Experience was more limited than Salesforce Classic in many
ways back in the first release (Winter '16), but after multiple releases,
Lightning Experience’s functionality has caught up with Salesforce
Classic. Almost all new features are being released exclusively for
Lightning Experience and are not available in Salesforce Classic. With
each new release, incentives to switch to Lightning Experience are
piling up.

If you are still using Salesforce Classic and JavaScript buttons, it will
require some development energy to create alternative solutions that
will work in Lightning, but it is possible to create a Lightning-friendly
replacement in virtually any given scenario. If your users are clamoring
to switch to Lightning Experience or if you think they could benefit from
some of the new features, JavaScript buttons need not hold you back.

This white paper provides some strategies for replacing your JavaScript
buttons with Lightning-friendly alternatives and walks through some
simple and advanced example solutions.

Most new features

are being released

exclusively for

Lightning Experience

and are not available

in Salesforce Classic.

With each new release,

incentives to switch to

Lightning Experience

are piling up.

WHITE PAPER
Converting JavaScript Buttons for Lightning Experience

1

http://salesforce.com/

Discovery

The first step in providing alternatives for your
JavaScript buttons is to inventory all of the JavaScript
buttons in your Salesforce org. You can go about this
in two ways.

First, you can run the Lightning Experience Readiness
evaluation. You can launch the evaluation from the
Lightning Experience section in the Force.com Setup
menu in your Salesforce org. An automated process
will check all of the features you are using in your
org that are not supported or may not operate as
expected in Lightning Experience and you will receive
a complete report via email once the process has
finished checking everything in your org. The report
should highlight every JavaScript button you have
in your org under the “Custom Buttons and Links –
JavaScript” section and will also provide details about
the page layouts, number of profiles, and number of
users for each button and a basic recommendation
about how to replace the button.

Second, you can take a manual inventory of all
of your JavaScript buttons by taking a look at the
Buttons, Links, and Actions section of each standard
and custom object in use in your Salesforce org
and identify any that use OnClick JavaScript as the
Content Source.

If you make a manual inventory of your JavaScript
buttons, you should still take into consideration
which page layouts use each JavaScript button and
whether those page layouts are assigned to profiles
for users who would be using Lightning Experience.
When you are looking at the Detail page for a
JavaScript button, you can click on the “Where is this
used?” button to see which page layouts include it.

When planning alternatives to your JavaScript
buttons, it’s also helpful to find out from your users
whether or not they use each button, how often they
use each, and how critical each button is to their
work. This information can help you prioritize your
JavaScript alternative release strategy.

Converting JavaScript Buttons for Lightning Experience

Simple Solutions

Look for the simplest solutions first. If a JavaScript
button isn’t included in any page layouts or the List
View layout for the relevant object, you don’t need to
replace it with an alternative.

If the button is used in a layout, but you’ve found
out from your users that they never use it, you can
move to Lightning Experience without providing an
alternative for the button. If it does happen that
some of your users need it, they can always switch
back to Classic while you develop an alternative.

Some JavaScript buttons were developed many
Salesforce releases ago. If your button is a few years
old, there’s a chance that Salesforce has rolled out a
new feature since then that can replace the function
of your JavaScript button. Search Salesforce’s
success site for potential out-of-the-box alternatives
to your JavaScript button. It’s not very likely that
you’ll find a new Salesforce feature to replace your
button, but it’s worth a look because of the ease of
implementation.

Here’s an example of a JavaScript button that could
be replaced by a standard Salesforce feature. Say
you have a JavaScript button on your Opportunity
record that will open up a popup window with a
search on a news aggregator for relevant stories
about the Account to which the Opportunity belongs.
In Lightning Experience, you can enable the News
feature which will show news stories related to the
associated Account record and Industry right on the
Opportunity page.

2

A very common use for JavaScript buttons is to populate a new record with values based on the values in the
record where a user clicks the button. Let’s say, for example, that you have a custom object in your Salesforce org
named “Project” and in your business process, when you win an Opportunity, a new associated Project record
needs to be created. The new Project record
needs to be linked back to the Opportunity record
and will almost always share information with the
Opportunity such as the Account, Primary Campaign
Source, and Type. To make the new Project creation
process easier for your team, you’ve built a JavaScript
button on Opportunities to pull up a new Project
record that automatically links back to the won
Opportunity and also pre-populates fields on the
new Project with information from the Opportunity
like the Account, Primary Campaign Source, and
Type.

This is a great use case for a Quick Action.

To create a Quick Action for this scenario, create
a new Quick Action for Opportunities. Choose the
“Create a Record” Action Type and choose “Project”
as the Target Object.

Converting JavaScript Buttons for Lightning Experience

Declarative Solutions

If you need to replace a JavaScript button that’s important to your users, look into whether a declarative solution
will work before evaluating a programmatic solution. Declarative solutions that can replace a JavaScript button
including Custom URL Buttons, VisualForce Page Buttons, and Quick Actions.

Custom URL buttons are suitable substitutes for JavaScript buttons that direct to a page on an external website
or that navigate to a different record in Salesforce. For internal Salesforce links, use the URLFOR function and
$Action functions or Relative Salesforce URLs (e.g. /{!Contact.Id}) rather than hard-coded URLs (e.g. https://na11.
salesforce.com/{!Contact.ID}) to keep
your users from getting directed out of
Lightning Experience. You can update a
JavaScript button to a Custom URL button
by updating the Content Source for your
button from OnClick JavaScript to URL,
but make sure to test in a Sandbox first
before you do this in your Production
environment.

If your JavaScript button directs to a VisualForce page, you may be able to make a very easy update to your button
to make it compatible with Lightning Experience. If your VisualForce page uses the Standard Controller for the
object where the button resides, you can update your existing button to use the Visualforce Page as the Content
Source, rather than OnClick JavaScript, and select the correct Visualforce Page from the dropdown list of available
pages. Again, when making updates to an existing button, always test in a Sandbox first before making the change
directly in your Production environment.

If your JavaScript button directs to a VisualForce page that uses a Custom Controller, you may want to look into
making that page available in a Tab and re-training your users to access it through the Tab in Lightning Experience.

3

Next you’ll want to add,
to the page layout for
the action, any fields
that the user should
fill out when creating a
new Project record, as
well as any fields that
should be pre-populated
from information on the
Opportunity.

After you have set up
the page layout, you can
set up Predefined Field
Values.

For example, here is
how a Predefined Field
Value to pre-populate
the Account field with
the same Account as the
Opportunity would look:

Converting JavaScript Buttons for Lightning Experience

4

Now your new Project record will be automatically
populated with the correct Account record
when a user clicks on the New Project button on
Opportunities (you’ll need to make the Quick Action
available in the page layout to make the button
available).

If you need more advanced pre-population, for
example, if you need to pre-populate the Primary
Contact from the Opportunity into the Project
Sponsor field on a new Project, you may need to look
into a more advanced programmatic solution.

Converting JavaScript Buttons for Lightning Experience

5

Advanced Solutions

In many cases, a simple declarative solution will not
suffice as a replacement for a JavaScript button.
Since JavaScript buttons are powerful and relatively
easy to develop, many of them execute more
complex functions than a simple quick action or
URL can handle. Replacing the functionality of some
JavaScript buttons for compatibility with Lightning
Experience requires a programmatic solution.

Some examples of JavaScript buttons that will
require replacement with a programmatic solution
in Lightning Experience are buttons that provide
popups or feedback to the user based on inputs or
data state, buttons that operate on multiple records
in a list view, or buttons that make a callout to a
third-party service.

In one of these more complex scenarios, there
are two types of programmatic solutions that you
can use to replace a JavaScript button: Lightning
Actions, or Visualforce. Salesforce recommends using
Lightning Actions where possible, but you’ll need to
use Visualforce to replace a JavaScript button that
performs a mass action on records from a List View.

A Lightning Action is simply a Quick Action that calls
a Lightning Component, so one advantage of using a
Lightning Action rather than a Visualforce page is that
once the work is complete, the Lightning Component
can be re-used in other Lightning pages and
components. On the other hand, if you are looking
to do a quick switch over to Lightning and you have
a lot of classic Visualforce development experience
on your team, calling a Visualforce page from a Quick
Action is a viable option, especially now that the
Lightning Design System is available to provide users
a seamless transition between Visualforce pages and
the rest of Lightning Experience.

Converting JavaScript Buttons for Lightning Experience

Example: Warn the User

Here is a scenario where a Lightning Action can
replace your JavaScript button in a way that a Quick
Action can’t. You have a powerful tool, a JavaScript
button that opts out all Contacts at an Account from
receiving email. Users need to be able to use this
button to manage email marketing subscriptions
properly and keep up a good reputation for the
organization, but at the same time, this isn’t a
button users should be able to click and execute on
accident. For this reason, the JavaScript includes a
warning so the user must click through before the
update is executed.

You can replace this JavaScript button with a
Lightning Action, i.e. a Quick Action that calls a
Lightning Component. We’ll walk through the steps
of how you would construct this replacement button.
Before you can create the button, you’ll need to
create a Lightning Component with a client-side
controller and a server-side controller to support it.

Step 1: Apex Class

You will need an Apex class to handle the server-
side logic of the opt out operation, that is, actually
updating the opt out field on the Contacts in the
database. The Apex Class is the server-side controller
for your Lightning Component.

The example class below contains two methods
that can be used by a Lightning Component
since they are Aura Enabled. The first method
(getAccName) will allow us to display the Account
Name in our Lightning Component (only the
Account ID is available by default). The second
method (optOutContacts) takes the Account ID
as a parameter, queries the Contacts related to
the Account based on the ID, and updates the
HasOptedOutOfEmail field on all of those Contact
records.

6

Step 2: Lightning Component

After the Apex Class has been created, we can refer to it in a Lightning Component. Using the Developer Console,
create a new Lightning Component. The Component in the example below will display a helpful warning prompt
to the user along with a warning icon, allow the user to activate the Email Opt Out method via a button, and, at the
bottom, will display a message to the user describing the status of whether the Email Opt Out method executed
successfully.

When creating a Lightning Component that needs to call server-side logic, you need to reference your Apex
class as the controller in the beginning aura:component tag. To make a Component usable in a Lightning
Action, add force:lightingQuickAction, and to make it retrieve the record ID from the record it’s called from, add
force:hasRecordId.

The styling in this example is quite simple, but you can add some fancier styling that matches the rest of Lightning
Experience by tapping into the Lightning Design System stylesheet that is automatically available to your Lightning
Component (https://www.lightningdesignsystem.com/).

Converting JavaScript Buttons for Lightning Experience

public class optOutController {

 //Method to retrieve the Account Name.

 return [SELECT ID, Name FROM Account WHERE ID = :accid LIMIT 1][0].Name;
 }

 //Method to opt out the Contacts at the Account with the specified ID parameter.

 @AuraEnabled
 public static void optOutContacts(ID accid){

 List<Contact> contactsToOptOut = new List<Contact>(
 [SELECT ID, AccountId, HasOptedOutOfEmail
 FROM Contact
 WHERE AccountId = :accid]);
 for(Contact c : contactsToOptOut){

c.HasOptedOutOfEmail = TRUE;
 }

 update contactsToOptOut;
 }
}

7

@AuraEnabled
public static String getAccName(ID accid){

Converting JavaScript Buttons for Lightning Experience

<aura:component controller="optOutController"
implements="force:lightningQuickAction,force:hasRecordId">
 <aura:attribute name="recordId" type="Id" /><!-- Makes the record ID
available for use in the component. -->
 <aura:attribute name="accname" type="String" /><!—Attribute to hold the
Account Name. Will be populated by the doInit action in the handler. -->
 <aura:attribute name="message" type="String" default=" " /><!-- Attribute to
hold the success/error message after attempting to opt out the contacts. -->
 <aura:handler name="init" value="{!this}" action="{!c.doInit}" /><!-- Will call
the doInit method when the Component loads to populate the Account Name (accname)
attribute -->

 <div>
 <lightning:icon iconName="utility:warning" variant="warning" /><!-- Warning
icon from the Lightning Design System to help the user recognize this as a warning
prompt. -->
 </div>

 <p> <!-- Helpful text for the user. The Account Name will be populated
from the controller. -->

Are you sure you want to opt out all Contacts at <ui:outputText
value="{!v.accname}"/> from receiving emails?

 This action cannot be undone.
</p>

 <div>
 <!-- This is the button that will allow the user to Opt Out the Contacts at
the Account. It calls a function in the Component Controller which in turn calls
the function in the Apex Controller -->
 <ui:button label="Opt Out All Contacts"

press="{!c.submitOptOut}" />
 </div>

 <p>
 <!-- The success or error message after clicking the Opt Out All Contacts
button will display here. This message is always rendered because it starts out as
just a space and doesn’t appear to the user, but you could also add some
conditional rendering to show different things to the user depending on the state
such as a loading icon before the message is received from the Apex callout. -->

<ui:outputText value="{!v.message}"/>
</p>

 </aura:component>

8

Step 3: Lightning Component Controller

To make your Lightning Component responsive to user input and communicate with your Apex Class, you’ll need
to create a client-side Controller for your Lightning Component. You can very easily create your Component
Controller by clicking on the CONTROLLER button in the right panel of the Developer Console when you are
focused on the tab for your Lightning Component.

The Lightning Component Controller has, by far, the most lines of code of any of the code pieces of our example
opt out feature. This is because it’s the go-between and has to pass information between the Lightning Component
and the Apex Class.

In this example Lightning Component Controller, there are two functions. The first one, doInit, is meant to be
executed when the Component is loaded. It will call up the getAccName method from the Apex Class to get the
Account Name based on the Account ID from the Lightning Component. The second one, submitOptOut, will
request the submitOptOut method from the Apex Class be executed using the Account Id from the Lightning
Component. This should update the Email Opt Out checkbox on all the Contacts at the Account, and if it
does, the client-side controller will set the message to be displayed in the Lightning Component to a success
message. If there happens to be an error, the client-side controller will set the message to an error message. The
submitOptOut function will also disable the “Opt Out All Contacts” button so the user can’t press it again.

Converting JavaScript Buttons for Lightning Experience

({
//Function called on initialization of the component.

 doInit : function(component, event) {
 var action = component.get("c.getAccName");//Sets up a call to the getAccName
method from the Apex Class.
 action.setParams({

"accid": component.get("v.recordId")//Sets up the Account record
ID from the Lightning Component as the accid Parameter when calling the
getAccName method from the Apex Class.
 });

 action.setCallback(this, function(response){//Set up the logic of what
will happen when this client-side controller hears back from the Apex Controller.

 var state = response.getState();//Get the state (SUCCESS or
ERROR) from the response from the Apex Controller.

 if (component.isValid() && state === "SUCCESS") {//If the Apex
Controller sends back a successful result...

component.set("v.accname", response.getReturnValue());//The
return value should be a string containing the Account Name. Set this to the
accname attribute in the Lightning Component so that it can be displayed to
the user.

}
else {

 console.log("Failed with state: " + state); //Will log the state
in the console for a little help with debugging if there is a failure.

}

 });

9

 $A.enqueueAction(action);//Sends the call to the Apex Class to get the
Account Name.
 },

 //Function called when the button in the component is clicked/pressed.
 submitOptOut: function(component, event) {
 var action = component.get("c.optOutContacts");//Sets up a call to
the optOutContacts method in the Apex Class.
 action.setParams({

"accid": component.get("v.recordId")//Sets up the Account ID from
the Lightning Component as accid parameter in the call to the optOutContacts
method. });

 action.setCallback(this, function(response) {//Set up the logic of what
will happen when this client-side controller hears back from the Apex Controller.

var state = response.getState();//Get the state (SUCCESS or ERROR)
from the response from the Apex Controller. Different text will be pushed back
to the message attribute in the Lightning Component to be displayed to the
user depending on what happens.

if (state === "SUCCESS") {
component.set("v.message", "All Contacts have been successfully

opted out.");
}
else if (state === "INCOMPLETE") {
 component.set("v.message", "The operation may not have completed.

}
else if (state === "ERROR") {

component.set("v.message", "An error was encountered.

var errors = response.getError();
if (errors) {
if (errors[0] && errors[0].message)
{ console.log("Error message: " +
errors[0].message);

}
} else {

console.log("Unknown error");
component.set("v.message", "An error was encountered.

Please contact your administrator.");
}
}

 });

 $A.enqueueAction(action); //Send the call to the Apex controller to
update the Contacts at the Account to email opt out status.

 var btn = event.getSource();//Find the button that was pressed to call
this function.
 btn.set("v.disabled",true); //Disable the button from being pressed.
 }

})

Converting JavaScript Buttons for Lightning Experience

10

Please try again.");

Please contact your administrator.");

Step 4: Create the Button

After you have created the Lightning Component and its controllers, you can create a Lightning Action to access it.

In the Lightning Experience setup menu, navigate to the Object Manager, then go to the Account object. In the
Buttons, Links, and Actions section, click on the New Action button.

Set up your Lightning Action similarly to the screenshot below. For the Action Type, select “Lightning Component”.
Then select the Lightning Component you created. If your Lightning Component does not appear in the picklist, go
back to the code for your Lightning Component and make sure you’ve added this tag:

implements="force:lightningQuickAction,force:hasRecordId" in your opening
aura:component

Enter a height that will fit the content of your component and a Label that will be displayed on the button itself and
as the heading at the top of the Lightning Component when it is opened.

Converting JavaScript Buttons for Lightning Experience

11

Step 5: Add to Page Layout

After you’ve saved the button, you can add it to the Account page layout. On the Object Manager page for Account,
navigate to the Page Layouts section. Click the Page Layout where you’d like to add your new Opt Out button.
Select Salesforce1 & Lightning Actions from the UI element selector, find your new custom Opt Out button, and
drag it into the Salesforce1 and Lightning Experience Actions section below, then Save.

Note that since you’ll be adding the button to the Salesforce1 and Lightning Experience actions section, it will only
appear for users in the Lightning Experience. There is no need to create a separate page layout for your users in
Lightning Experience to make sure users see the appropriate button for their UI setting.

Now your new custom button should appear if you navigate to an Account record in Lightning Experience.
Depending on where in the order you placed the button, it may appear when you look at the Account button bar,
or you may need to click the downward arrow to access it.

Step 6: Test and Deploy

Now that you’ve added the Opt Out Contacts custom button to the Account page layout, you can click on it to see
what it looks like. Here is what you’ll see when clicking on our example button.

Converting JavaScript Buttons for Lightning Experience

12

You can click the Opt Out All Contacts button to test and confirm that your Contacts do get opted out and that
the success message appears. Since this solution includes an Apex Class to handle the server-side logic, you’ll also
need to do some scripted testing in an Apex Test Class in order to deploy to production.

Once you’ve created the test class and verified that everything works as expected, deploy your Lightning
Component Bundle, Apex Class, Apex Test Class, Custom Button, and Page Layout via your deployment tool of
choice.

Example: Mass Delete from a List View

The Mass Delete button is one of the more common uses of a JavaScript button used in a list view, especially for
custom objects, which don’t have a mass-delete tool available in Force.com setup. Mass Delete allows a user to
delete selected records from a list view. Since Mass Delete is a button used in a list view, it is necessary to create a
Visualforce button to replace the JavaScript button since Lightning Actions are not yet available for List Views.

Here is an example of how to create a Mass Delete button that works in Lightning Experience for a custom object
named “Project”. Since this requires Apex code development, you’ll need to build out the solution first in a Sandbox
before deploying to your Production instance.

Step 1: Apex Class / Controller Extension

To create your Visualforce button, you will first need to create an Apex Class that will function as an extension of
the standard set controller. This controller extension class needs to be created to handle deleting the selected
records from a list view.

Here is a very basic version of the controller extension code for mass deletion of selected items from a list view.
You could also add a property to show the number of selected records to be deleted or a preview of the records
to be deleted and handling to show the user whether the deletion request succeeded or failed. If you look closely
at this class, you will notice it could be used as a generic set controller extension for any object (although if you
added a property to show a preview of the records to be deleted, it would become object-specific).

Converting JavaScript Buttons for Lightning Experience

public with sharing class MassDeleteProjects {
 //Construct a standard set controller as controller extension.

 public ApexPages.StandardSetController controller;

 public MassDeleteProjects(ApexPages.StandardSetController constructor) {
 controller = constructor;
 }

 //Page Reference method to delete the selected records and then go back to
the previous page.
 public pageReference deleteProjects(){

 delete controller.getSelected();

 }
}

13

return controller.cancel();

Step 2: Visualforce Page

Next you will need to create a Visualforce page to
be accessed by your button. You will need to use
the standard controller for your custom object (in
this case Project__c) and reference the Apex Class
you created as the controller extension. You will also
need to define a recordSetVar to make it accessible
from a list button rather than a detail page button.

You could just call the method from the controller
to delete the records as an initialization action on
the page so that it doesn’t show up at all to the user,
but since the method deletes multiple records, it’s
a good idea to have a user confirmation step. It
does not require much more development work
to add the user confirmation step since it’s already
necessary to build a Visualforce page.

Now that the Lightning Design System is available for
Visualforce pages, take advantage of it to make your
deletion confirmation page a seamless part of the
Lightning Experience UI rather than sticking out as

Converting JavaScript Buttons for Lightning Experience

<apex:page standardController="Project__c" extensions="MassDeleteProjects"
recordSetVar="proj">
 <apex:slds /><!-- Implement the Salesforce Lightning Design System -->

 <div class="slds-modal__header">
 Confirm Delete

 </div>
 <div class="slds-modal__content slds-p-around--medium">

<p>
Are you sure you want to delete the selected Project records?
You may not be able to retrieve these records from the recycle
bin after choosing to delete them.

 </p>
</div>
 <apex:form >
 <apex:commandLink action="{!deleteProjects}" id="del">

 <button class="slds-button slds-button--neutral">
 Delete Projects

 </button>
</apex:commandLink>

 <apex:commandLink action="{!cancel}" id="goback">
 <button class="slds-button slds-button--neutral">

 Cancel
 </button>

</apex:commandLink>
 </apex:form>

 </div>
</apex:page>

an obvious custom UI element with Classic styling.

You can find resources for everything you need to
know about the Lightning Design System at https://
www.lightningdesignsystem.com/, Salesforce’s
official website for the Lightning CSS framework.
This site can help you find the right styles for each
component of your Visualforce page (or Lightning
component or mobile app).

Here is what the code for a basic deletion
confirmation page looks like. It contains a header,
some helpful warning text for the user, a button to
call up the deleteProjects method from our custom
controller extension, and a cancel button to use the
cancel feature from the standard controller to go
back to the previous page.

You could also add some additional elements to this
page to correspond to additional elements in the
controller extension, such as a count of the selected
records, a preview of the selected records, or
markup to display success or error messages.

14

<div class="slds-scope" style="text-align:center">

Step 3: Create the Button

Once the Visualforce page is set up, you can create a button to access it. You will need to create a Custom Button
or Link rather than an Action in order to use your Visualforce page.

In the Lightning Experience setup menu, you’ll need to navigate to the Object Manager, then go to the object you’re
setting up a mass delete button for (in this example, Project). In the Buttons, Links, and Actions section, click on the
New Custom Button or Link button.

Set up your button similarly to the screenshot below. First, give your button a user-friendly label. Then select List
Button as the display type so that the button can display from a list view. Make sure the Display Checkboxes box
is checked since the Mass Delete feature is dependent on the user being able to select items from a list. For the
Content Source, select Visualforce Page and from the Content picklist, select the Visualforce Page created above.
If your Visualforce Page does not appear in the Content picklist, go back to the code for your Visualforce Page and
make sure that the standardController refers to your custom object correctly and that the recordSetVar is defined
in the opening apex:page tag.

Converting JavaScript Buttons for Lightning Experience

15

Step 5: Test and Deploy

Now you can test out the button for yourself. Pull up a list view of your custom object, select a few disposable
records, and click your new custom button. Here is what our example deletion confirmation page looks like.

You can click the Delete Projects button (or the equivalent button that you have created) to test and confirm that it
deletes the records, but since you’ve built an Apex Class to handle the record deletion, you’ll also need to do some
scripted testing in an Apex Test Class in order to deploy to production.

Once you’ve created the test class and verified that everything works as expected, deploy your Apex Class,
Visualforce Page, Apex Test Class, Custom Button, and Search Layout via your deployment tool of choice.

Converting JavaScript Buttons for Lightning Experience

Step 4: Add to Layout

After you’ve saved the button, you can add it to the list view layout. On the Object Manager page for Project (or
your custom object), navigate to the Search Layouts section. Click the arrow beside the List View layout to select
Edit. Move your button from Available Buttons to Selected Buttons and Save. Now your custom button should
appear if you navigate to a list view for your custom object. In the screenshot below, you can see the Delete
Selected button at the far right of the navigation for a list view in the Projects tab.

16

Other Scenarios for Advanced Solutions

These two examples are only a small sample of the ways that JavaScript buttons can be replaced with alternative
methods that work in Lightning Experience.

Another common use for JavaScript buttons is to perform record validation and displaying feedback or error
messages based on user input when saving a record. Depending on the exact scenario, this type of JavaScript
button can be replaced by an Apex Trigger or Validation Rule, which will take effect in either Classic or Lightning
Experience. You could also replace a button of this kind with a Lightning Action that handles the validation and
retrieves messages for the user via a Lightning Component Controller.

Sometimes a scenario where it seems at first like a coded solution would be needed to replace a JavaScript can
be satisfied by a point-and-click solution instead. For example, if you’re using JavaScript to run validation and
provide feedback messages to remind users to fill in a few specific fields at specific stages in a business process,
you might be able to adopt the Path feature to help users focus on those specific fields in the appropriate phases.
Another JavaScript button that could be replaced with a point-and-click solution is a button that replaces values on
a Contact record from the Contact’s associated Account record. This is useful when a Contact moves to a different
Account and needs contact information updated accordingly, but user validation is still required to make sure all
the details are correct. This wouldn’t need to be replaced with a Trigger, Process Flow, or Lightning Action, but
could be replaced by a humble Quick Action with pre-populated values from the new Account record.

Another common type of JavaScript button is one that makes API calls to another system. This type of button
will always require a programmatic replacement, but a Lightning Action should always be able to cover it (unless
it’s a list view button, in which case a Visualforce button can replace it). The Lightning Action can call a Lightning
Component that can handle user input and display any success or error messages with a Component Controller
that handles sending the input to an Apex Controller that sends to and receives content from the external API and
populating any feedback messages back into the Component.

Implementation Tips

A key difference between working with JavaScript buttons and programmatic solutions that are compatible with
the Lightning Experience is the sandbox. Although it’s a good practice to test out a JavaScript button in a sandbox
first before deploying it to Production, it’s not required, and it’s frighteningly easy to add buttons that don’t work,
or worse, harm your data (no doubt one of the reasons Salesforce is phasing this solution out). On the other hand,
programmatic solutions will need to be developed in a Sandbox first and all Apex code will need to have at least
75% code coverage from Apex test classes in order to be deployed to a Production environment.

Take advantage of the testing requirement in the Sandbox to write good Apex tests that cover every scenario you
can think of with plenty of system.asserts as well as testing out your buttons through the UI to make sure you’ve
worked out all the bugs before deploying to production. This can save you a lot of complaints or support tickets
from your users down the line.

When you do roll out Lightning Experience to your users, you can roll out to a smaller group of users first who can
help spot any additional bugs or snags before your roll out Lightning Experience to all your users. As you roll out
Lightning Experience make sure your users know how to use the switcher so they can go back to Classic to use a
critical JavaScript button if a replacement still has a bug. This is a great safety-net to use, especially if you are new
to developing Lightning Components or Apex Classes.

Converting JavaScript Buttons for Lightning Experience

17

ADDITIONAL RESOURCES

Self-Guided Training on Salesforce Trailhead

Lightning Experience Rollout: https://trailhead.salesforce.com/
modules/lex_migration_rollout

Lightning Alternatives to JavaScript Buttons: https://trailhead.
salesforce.com/modules/lex_javascript_button_migration

Lightning Components Basics: https://trailhead.salesforce.com/
modules/lex_dev_lc_basics

Lightning Design System: https://trailhead.salesforce.com/modules/
lightning_design_system

Salesforce Developer Documentation

Lightning Components Developer Guide: https://developer.
salesforce.com/docs/atlas.en-us.lightning.meta/lightning/intro_
framework.htm

Lightning Design System: https://www.lightningdesignsystem.com/

Apex Developer Guide: https://developer.salesforce.com/docs/atlas.
en-us.apexcode.meta/apexcode/apex_dev_guide.htm

Converting JavaScript Buttons for Lightning Experience

18

If you need assistance with a Lightning migration, contact us at
salesforcesuccess@bayforce.com. We are always here to assist
you with your Salesforce projects.

